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Approximate External Boundaries for 
Truncated Models of Unbounded Media 

J. Enrique Lucoa) 

The objective of this study is to obtain simple boundary springs that when 

used in conjunction with Lysmer’s dampers could result in a simple and effective 

artificial boundary for soil island models of soil-structure interaction problems.  In 

particular, simple approximate expressions for the stiffnesses of distributed 

boundary springs appropriate for hemispherical, cylindrical, and rectangular soil 

islands are derived.  Numerical values for the stiffness coefficients are presented 

for different aspect ratios of the soil islands.  

1. INTRODUCTION 

A variety of dynamic soil-structure interaction problems involving foundations with 

complex geometries or irregular soil deposits are analyzed by use of a soil island approach in 

which a portion of the soil surrounding the foundation is modeled, usually in a discretized 

fashion, together with the foundation and the superstructure.  This convenient and flexible 

approach requires imposing some appropriate boundary conditions on the external artificial 

boundary of the soil island so that the response of the truncated soil model approaches that of 

an unbounded medium.   While effective, quiet, non-reflecting or transmitting boundaries 

have been developed for this purpose, they are typically not used in the initial stages of 

model development and analysis as these special boundaries are not implemented in some of 

the most commonly used computational codes. 

 The use of Lysmer’s dampers on the artificial boundary has emerged as a simple and 

effective way to reduce unwanted reflections from the boundary and to stabilize the overall 

model in the dynamic case.  However, a low frequency drift of the overall model may be 

obtained if additional boundary springs are not introduced. 

The objective of this study is to obtain simple boundary springs that when used in 

conjunction with Lysmer’s dampers could result in an effective artificial boundary for a 
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wider frequency range.  Lysmer’s dampers are local devices that relate components of the 

traction vector at a point with components of the velocity vector at the same point through 

damper constants per unit area that depend on the density of the soil and on the velocities of 

P-and S-waves also at the same point.  Dimensional analysis indicates that if springs are 

introduced relating traction components to displacement components at a point, the resulting 

spring constants per unit area must depend on the elastic moduli and on some length scale.  

This length scale is related to the overall size of the soil island and thus reflects the global 

problem.  

The spring constants also reflect some global characteristics such as the relative 

importance of resultant forces and resultant moments acting on the foundation. 

  In this paper, approximate boundary springs for hemispherical, cylindrical, and 

rectangular soil islands are obtained by consideration of the far-field displacements and 

stresses for static forces acting on an unbounded medium.  The classical static solutions of 

Kelvin (Thomson, 1848,1882), Boussinesq (1878, 1885), and Cerruti (1882) are used to 

derive simple expressions and numerical values for the spring constants per unit area for 

these three soil island geometries.   The emphasis is on simplicity for practical applications, 

and for this reason, a number of approximations are introduced.  

The displacements and stresses resulting from applied moments decay more quickly in 

the far-field than the corresponding quantities for applied forces.  For this reason, the rocking 

and torsional response is less sensitive to the location of the external boundary than the 

response to applied forces.  The boundary springs presented herein are based on the response 

to resultant forces, which are more affected by the presence of the artificial boundary.  The 

resulting springs give excellent results for the translational response but may not be 

sufficiently accurate to represent predominantly rocking or torsional motions when the 

artificial boundary is placed extremely close to the foundation.  For reasonably sized soil 

islands, the obtained springs should provide good results for both the translation and 

rotational components of the response of the foundation. 

2.   HEMISPHERICAL REGION 

To begin with, we consider the case of a hemispherical soil island or truncated elastic 

region of radius R a= .  Referring to spherical coordinates ( ), ,R θ ϕ , the boundary conditions 

on the artificial boundary R a=  are approximated by 
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 ( ) ( ), , , ,RR RR Ra k u aσ θ ϕ θ ϕ= −  (2.1a) 

 ( ) ( ), , , ,R Ra k u aθ θ θσ θ ϕ θ ϕ= −  (2.1b) 

 ( ) ( ), , , ,R Ra k u aϕ ϕ ϕσ θ ϕ θ ϕ= −  (2.1c) 

where RRk , Rk θ , and Rk ϕ  represent appropriate spring constants per unit area.  Estimates for 

these spring constants are obtained by rewriting Eqs. (2.1a, b, c) in the form  

 RR RR Rk uσ= −  ,          R Rk uθ θ θσ= −  ,          R Rk uϕ ϕ ϕσ= −  (2.2a, b, c) 

and by calculating the stress-to-displacement ratios on the right-hand-side by use of some 

simple exact solutions for an unbounded medium and for a half-space.  In some cases, the 

resulting estimates of RRk , Rk θ , and Rk ϕ  may be functions of θ  and ϕ .  In these cases, it may 

be convenient for practical applications to use the average estimates given by   

RR RR Rk uσ= −  ,          R Rk uθ θ θσ= −  ,          R Rk uϕ ϕ ϕσ= −      (2.3a, b, c) 

where Rασ  and uα ( ), ,rα θ ϕ=  represent weighted averages of the tractions and 

displacements over the artificial boundary. 

2.1 BOUNDARY SPRINGS BASED ON SOLUTIONS FOR AN UNBOUNDED MEDIUM   

It is convenient to start with Kelvin’s solution obtained in 1848 (Thomson, 1882) for the 

response of an unbounded elastic medium subjected to a concentrated vertical force zP  acting 

at the origin of the coordinate system.  The quantities of interest, in spherical coordinates 

( ), ,R θ ϕ , are (Love, 1944, p. 202):     

( ) ( )
( )

3 4
, , sin , 0, cos

4 4 1
z

R
P

u u u
Rθ ϕ

ν
ϕ ϕ

πµ ν
 −

=   − 
                           (2.4a) 

( ) ( )
( )

( )
( )2

2 1 2
, , sin , 0, cos

1 2 14
z

RR R R
P
Rθ ϕ

ν ν
σ σ σ ϕ ϕ

ν νπ
 − −

= −   − − 
                           (2.4b) 

where µ  denotes the shear modulus, ν  the Poisson’s ratio,  and ϕ  the latitude measured 

from the plane 0z = ( )cos cos , cos sin , sinx R y R z Rϕ θ ϕ θ ϕ= = = .  Substitution from 
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Eqs. (2.4a), and (2.4b) into Eqs. (2.2) leads to the following estimates for the spring constants 

RRk  and Rk ϕ : 

( )
( )
2
1

K
RRk

R
ν µ
ν
−

=
−

                                                          (2.5) 

 
( )
( )
2 1 2

3 4
K
Rk

Rϕ

ν µ
ν

−
=

−
                                                       (2.6) 

which are independent of θ  and ϕ  and depend only on the radius R a=  of the artificial 

boundary.  

The spherical symmetry of the problem suggests that Rk θ  should be equal to Rk ϕ  for the 

unbounded medium.  This can be confirmed by considering the solution for a concentrated 

horizontal force xP  acting at the origin.  Again, the quantities of interest, in spherical 

coordinates, are (Love, 1944, p. 202):  

( ) ( )
( )

( )
( )

3 4 3 4
, , cos cos , sin , sin cos

4 4 1 4 1
x

R
P

u u u
Rθ ϕ

ν ν
ϕ θ ϕ ϕ θ

πµ ν ν
 − −

= − −  − − 
 (2.7a) 

( ) ( )
( )

( )
( )

( )
( )2

2 1 2 1 2
, , cos cos , sin , sin cos

1 2 1 2 14
x

RR R r
P
Rθ ϕ

ν ν ν
σ σ σ ϕ θ θ ϕ θ

ν ν νπ
 − − −

= − 
− − −  

     (2.7b) 

Substitution from Eqs. (2.7a) and (2.7b) into Eqs. (2.2) leads to the same expressions for K
RRk  

and K
Rk ϕ   given by Eqs. (2.5) and (2.6), respectively.  The new result is  

 
( )
( )
2 1 2

3 4
K
Rk

Rθ

ν µ
ν

−
=

−
                                                    (2.8) 

which confirms that R Rk kθ ϕ=  for this case. 

The boundary conditions (2.1a, b, c) in conjunction with the springs constants K
RRk , K

Rk ϕ , 

and K
Rk θ  given by Eqs. (2.5), (2.6), and (2.8), are exact for concentrated forces acting at the 

origin.  The next step is to consider the boundary conditions and spring constants for 

concentrated moments acting also at the origin.   The simplest case corresponds to a vertical a 

torque zT  acting at 0R = .    The displacement and stress components of interest, in this case, 

are given by 
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 2

cos
8

zT
u

Rθ
ϕ

πµ
=   ,                    3

3 cos
8

z
R

T
Rθ
ϕσ

π
= −                       (2.9a, b) 

which lead to the alternative estimate of the spring constant Rk θ  on the surface R a= : 

3T
Rk Rθ µ=                                                (2.10) 

Based on the spherical symmetry, it is expected that consideration of a concentrated 

moment xM  about the x-axis will lead to  

3M
Rk Rϕ µ=                                                         (2.11) 

The spring constants T M
R RK Kθ ϕ=  are independent of θ  and ϕ  and are considerably larger 

than those given by Eqs. (2.6) and (2.8).  For example, for 1 4ν = , ( )( )1 2K K
R Rk k Rθ ϕ µ= =  

while ( )3T M
R Rk K Rθ ϕ µ= = .   

Since the displacements and stresses for a concentrated torque or moment decay very 

quickly with distance ( 2R−  and 3R− , respectively), the effects of an artificial boundary on the 

response to these excitations are much less pronounced than those for resultant forces for 

which the response decays more slowly with ( 1R−  and 2R− , respectively).  This suggests that 

the estimates of RRk , Rk ϕ , and Rk θ  based on resultant forces are typically more pertinent than 

those based on concentrated moments.   

The boundary spring constants derived in this section are based on the fundamental 

solutions for an unbounded full-space.  Estimates of the corresponding stiffnesses for an 

elastic half-space are considered next.  

2.2  ESTIMATES OF RRk FOR A HALF-SPACE  

An estimate for RRk  can be obtained by consideration of Cerruti’s solution (1882) for a 

horizontal point load xP  applied to the surface of a half-space ( )0z > .  The quantities of 

interest are  

 ( ) ( )1 2
2 1 cos cos

2 1 sin
x

R
P

u
R

ν
ν ϕ θ

πµ ϕ
 −

= − − + 
                   (2.12a) 
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 ( ) ( )
2

1 2
2 cos cos

1 sin
x

RR
P
R

ν
σ ν ϕ θ

ϕπ
 −

= − − − + 
                  (2.12b) 

which lead to  

 ( ) ( ) ( )

21 sin
10

1 2 1 sin
C C
RR RRk k

ν ϕ
νϕ
ν ϕ

 − +   +  =
+ − 

  

                               (2.13) 

where ( ) ( )0 2 1C
RRk Rν µ= + .  For 0ν =  and 1 2ν = , the quantity within the square 

brackets in Eq. (2.13) is equal to one, and consequently, the spring constant C
RRk  becomes 

independent of ϕ  and equal to ( )0C
RRk  for these two values of ν . The stiffness ( )C

RRk ϕ  

varies from ( )0C
RRk  for 0ϕ =  to ( ) ( ) ( )2 6 3 2RRk Rπ ν µ = −   for 2ϕ π= .  

Since the variation of C
RRk  with ϕ  is not very strong, it is convenient to use a constant 

value estimated as C C C
RR RR Rk uσ= −  where 

 ( ) ( )2
20

2 2 2 1 2 ln 2 cosC x
RR RR

P
d

R

π
σ σ ϕ ν ν θ

π ππ
 = = − ⋅ − − − ∫     (2.14a) 

( ) ( )2
20

2 2 2 1 1 2 ln 2 cos
2

C x
R R

P
u u d

R

π
ϕ ν ν θ

π ππµ
 = = ⋅ − − − ∫           (2.14b) 

The resulting estimate for C
RRk  is 

 
( ) ( )
( ) ( )
2 1 2 ln 2

2
2 1 1 2 ln 2

C
RRk

R
ν ν µ
ν ν

 − − −
=  

− − −  
                                        (2.15) 

which can be approximated by  

 13 42
13 6

C
RRk

R
ν µ
ν

+ = ⋅  − 
                                                       (2.16) 

This estimate C
RRk  of the radial spring is numerically equal to K

RRk  for 0ν =  and 1 2ν =  and 

is similar to K
RRk  for other values of ν . 
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The solution of Boussinesq (1885) obtained in 1878 for a vertical point load applied on 

the surface of the half-space 0z >  can also be used to obtain an estimate of RRk .  Again, 

using average values for RRσ  and ru  leads to  

 
( ) ( )( )
( ) ( )( )
2 1 2 4

2
2 1 1 2 4

B
RRk

R
ν ν π µ
ν ν π

 − − −
=  

− − −  
                          (2.17) 

which matches C
RRk  for 0ν = and 1 2ν =  and is similar for other values of ν .    

2.3  ESTIMATES OF Rθk FOR A HALF-SPACE     

An estimate for Rk θ  can be obtained by considering the response of a half-space to a 

horizontal point force xP  acting at the origin.  Cerruti’s solution (1882) indicates that    

 
( )1 2

1 sin
4 1 sin

xP
u

Rθ

ν
θ

πµ ϕ
 −

= − + + 
                                       (2.18a) 

( )
( )

2

2 2

1 2 cos
sin

2 1 sin
x

R
P
Rθ

ν ϕ
σ θ

π ϕ

−
=

+
                                        (2.18b) 

from where the estimate 

( ) ( )( )
( )

2 1 2 1 sin
2 1 sin

C
Rk

Rθ

ν ϕ µϕ
ν ϕ

 − −
=  

− +  
                                            (2.19) 

of the stiffness Rk θ  on the surface R a=  is obtained.  The stiffness C
Rk θ  is a function of ϕ  

and varies from ( ) ( )1 2 1 Rν ν µ − −   on the surface 0ϕ =  to a value of zero on the axis 

2ϕ π= .  An equivalent uniform stiffness C
Rk θ  can be obtained as C C C

R Rk uθ θ θσ= −  where 

  ( )2
20

2 0.546 1 2
4

C x
r r

P
d

R

π

θ θσ σ ϕ ν
π π

 = = − ∫                                  (2.20a) 

 ( )2

0

2 1 0.637 1 2
4

C xP
u u d

R

π

θ θ ϕ ν
π πµ

 = = − + − ∫   .           (2.20b) 

The resulting stiffness can be approximated by  



 

 
8

( )
( )
3 1 2

9 7
C

Rk
Rθ

ν µ
ν

−
=

−
                      (2.21) 

which is a fraction ranging from ( )0.5 0ν =  to ( )0.27 1 2ν =  of the stiffness K
Rk θ  for an 

unbounded medium. 

2.4  ESTIMATES OF kRϕ FOR A HALF-SPACE  

An estimate for Rk ϕ  can be obtained by use of Boussinesq’s solution (1885) for a normal 

point load zP  acting on the surface of the half-space 0z > .  The quantities of interest, in this 

case, are:   

  
( ) ( )3 4 sin 2 1

cos
4 1 sin

zP
u

Rϕ

ν ϕ ν
ϕ

πµ ϕ
 − + −

=  + 
                         (2.22a) 

( )
2

1 2 sin cos
1 sin2

z
R

P
Rϕ

ν ϕ ϕ
σ

ϕπ
 −

= −  + 
                                   (2.22b) 

and the resulting estimate of Rk ϕ  is   

( ) ( )

( )

2 1 2 sin
3 45 6 1 1 sin
5 6

B
Rk

Rϕ

ν µ ϕϕ
νν ϕ
ν

 
 −
 =

−−   − −  −  

                                      (2.23) 

The stiffness B
Rk ϕ varies from 0B

Rk ϕ =  on the surface 0ϕ =  to 

( ) ( ) ( )2 1 2 5 6B
Rk Rϕ ν ν µ = − −   on the axis 2ϕ π= .   It is apparent that the shear spring 

constant Rk ϕ , defined by Eq. (2.23), vanishes for all angles ϕ  for 1 2ν = .   

For practical applications, it may be convenient to use a stiffness Rk ϕ  independent of ϕ .  

This constant stiffness Rk ϕ  can be estimated as BB B
R Rk uϕ ϕ ϕ

σ= −  where 

 ( ) ( )2
20

2 21 2 1 2
2

B z
R R

P
d ln

R

π

ϕ ϕσ σ ϕ ν
π ππ

= = − − −∫                  (2.24a) 

 ( ) ( )2

0

2 2 3 4 1 2 2
4

B zP
u u d ln

R

π

ϕ ϕ ϕ ν ν
π πµ π

 = = − − − ∫            (2.24b) 
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The resulting estimate of B
Rk ϕ  is  

 
( )( )

( ) ( )
2 1 2 1 2

3 4 1 2 2
B

R

ln
k

R lnϕ

νµ
ν ν

 − −
=  

− − −  
                                (2.25) 

which can be approximated by  

 
( )

( )
4 1 2
15 17

B
Rk

Rϕ

ν µ
ν

−
=

−
                                                   (2.26) 

The average stiffness B
Rk ϕ  for the half-space is also a fraction of the stiffness K

Rk ϕ  for an 

unbounded medium. 

2.5  SUMMARY AND COMPARISONS   

In summary, for practical applications, the following values for the stiffnesses RRk , Rk θ , 

and Rk ϕ  for uniform boundary springs are suggested: 

(a) full-space 

( )
( )
2
1RRk

R
ν µ
ν
−

=
−

  ,        
( )
( )
2 1 2

3 4Rk
Rθ

ν µ
ν

−
=

−
  ,        

( )
( )
2 1 2

3 4Rk
Rϕ

ν µ
ν

−
=

−
            (2.27a, b, c) 

 

(b) half-space 

( )
( )
13 4

2
13 6RRk

R
ν µ
ν

+
=

−
  ,     

( )
( )
3 1 2

9 7Rk
Rθ

ν µ
ν

−
=

−
  ,     

( )
( )
4 1 2
15 17Rk

Rϕ

ν µ
ν

−
=

−
          (2.28a, b, c)       

Numerical values for the stiffnesses RRk , Rk θ , and Rk ϕ  for some typical Poisson’s ratios 

are presented in Table 2.1. 

An extreme and not very realistic test of the boundary springs given by Eqs. (2.27) and 

(2.28) can be obtained by applying these springs directly to the boundary of a rigid 

hemispherical foundation of radius a  embedded in an elastic half-space.  The vertical VVK , 

horizontal HHK , coupling HMK , rocking MMK , and torsional TTK  static impedance functions 

for such a foundation resting on uniform springs are given by  
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( ) 22 2
3VV RR RK k k aϕ
π

= +   ,                               ( ) 22 3
3HH RR R RK k k k aθ ϕ
π

= + +           (2.29) 

and  

( ) 3

2HM MH R RK K k k aθ ϕ
π

= = +  ,     ( ) 43
3MM R RK k k aθ ϕ
π

= + ,    44
3TT RK k aθ
π

=  .      (2.30) 

Substitution from Eqs. (2.29) and (2.30) into Eq. (2.31) leads to the numerical values for 

the impedances listed in Table 2.2 for the case 1 4ν = .  The resulting crude estimates of the 

impedance functions are compared with more accurate numerical results obtained by Luco 

and Wong (1986) by use of an indirect boundary integral method. 

Table 2.1  Normalized Stiffnesses for Boundary Spring 
  

 

 

 

 

 

 

 

 

 

 

 

The comparison in Table 2.2 indicates that the boundary springs based on solutions for a 

half-space [Eq. (2.28)] when applied directly to the boundary of a rigid hemispherical 

foundation lead to reasonable estimates for the vertical (-18% error) and horizontal (-25% 

error) static impedance functions.  Slightly better results for VVK  and HHK  are obtained in 

this extreme case by use of the spring constants [Eq. (2.27)] based on Kelvin’s solution for a 

full-space (-3% error for VVK  and 18% error for HHK ).  These results suggest that the 

 0ν =  1 4ν = 1 3ν = 1 2ν =

Full-Space 

RRRk µ  

RRk θ µ  

RRk ϕ µ  

 

Half-Space 

RRRk µ  

RRk θ µ  

RRk ϕ µ  

 

 

2.000 

0.667 

0.667 

 

 

 

2.000 

0.333 

0.267 

 

 

 

2.333 

0.500 

0.500 

 

 

 

2.435 

0.207 

0.186 

 

 

2.500 

0.400 

0.400 

 

 

 

2.601 

0.150 

0.143 

 

 

3.000 

0.000 

0.000 

 

 

 

3.000 

0.000 

0.000 
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boundary springs derived here will substantially improve the response of even a small soil 

island.   

Table 2.2  Comparison of Impedance Functions for a Hemispherical Foundation ( )1 4ν =  

 V VK aµ  H HK aµ 2
H MK aµ 3

M MK aµ  3
T TK aµ

Eq. (2.28) 

Eq. (2.27) 

5.88 

6.98 

5.94 

9.42 

0.62 

1.57 

0.80 

2.09 

0.87 

2.09 

Luco&Wong  7.19 7.95 3.98 10.34 12.57 

 

The comparisons in Table 2.2 show large errors for the impedance functions involving 

rocking and torsional moments when the boundary springs are applied directly to the 

foundation.  This is to be expected as the boundary springs were based on resultant forces 

and not moments.  However, a moderately-sized soil island should be sufficient to obtain 

accurate results for the quickly attenuating response to applied moments.     

3. CYLINDRICAL REGIONS 

Next, we consider the selection of boundary springs so that a finite elastic cylindrical 

region of radius a  and depth h  can approximately represent an elastic half-space ( )0z > .  

Cylindrical coordinates ( ), ,r zθ  such that cosx r θ= , siny r θ= , and z z=  will be used to 

determine the boundary springs.   

Lateral Boundary.  The boundary conditions on the lateral boundary r a=  

( )0 2 , 0 z hθ π< < < <  of the cylinder are approximated by  

 rr rr rk uσ = −  ,          r rk uθ θ θσ = −   ,          rz rz zk uσ = −              (3.1) 

where rrk , rk θ , and rzk  represent the stiffness per unit area of springs distributed over the 

lateral boundary of the cylinder.  These constants are estimated by use of: 

 ( ) ( ) ( ), , , , , ,r rk a z a z u a zα α αθ σ θ θ= −   ,               ( ), ,r zα θ=  (3.2) 

where ru , uθ , zu  and rrσ , rθσ , rzσ  are the displacement and stress components for known 

fundamental solutions for a half-space.  For practical applications, it may be convenient to 
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use spring constants that are independent of position.  Average estimates ( ), ,rk r zα α θ=  can 

be written in the form  

 r rk aα αµ β=                                                      (3.3) 

where the dimensionless stiffnesses rαβ  are given by: 

 ( ) ( ) ( ) ( )
2 2

0 0 0 0

h h

r r a d dz u a a d dz
π π

α α α α αβ σ µ ϖ θ θ ϖ θ θ= −∫ ∫ ∫ ∫ ,     ( ), ,r zα θ=      (3.4) 

where ( )ϖ θ  is a weighting function.   

Basal Boundary.  The boundary conditions on the basal boundary z h=  

( )0 , 0 2r a θ π< < < <  of the cylinder are approximated by  

zr zr rk uσ = −  ,            z zk uθ θ θσ = −  ,           zz zz zk uσ = −                          (3.5) 

where zrk , zk θ , and zzk  represent the stiffness per unit area of springs distributed over the 

base of the cylinder.  These stiffnesses are obtained from  

 ( ) ( ) ( ), , , , , ,z zk r h r h u r hα α αθ σ θ θ= − ,               ( ), ,r hα θ=         (3.6) 

where again uα  and zασ  are displacements and stresses from known solutions for a half-

space.  Average basal spring constants independent of position are given by  

 z zk hα αµ β=   ,                             ( ), ,r zα θ=        (3.7) 

where 

( ) ( ) ( ) ( )
2 2

0 0 0 0

a a

z z r dr d u h r dr d
π π

α α α α αβ σ µ ϖ θ θ ϖ θ θ= −∫ ∫ ∫ ∫   ,  ( ), ,r zα θ=    (3.8) 

The stiffnesses rzk  and zzk  will result from consideration of Boussinesq’s (1885) solution 

while rrk , rk θ , zrk , and zk θ  will be obtained from Cerruti’s solution (1882). 
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3.1 ESTIMATES OF THE SPRING CONSTANTS zzk  AND rzk    

To obtain the stiffnesses zzk  and rzk  of the boundary springs for a cylindrical boundary, 

we consider the solution of Boussinesq (1885), later complemented by Terazawa (1916), for 

a vertical point load zP  acting on the surface of an elastic half-space ( )0z > .  In cylindrical 

coordinates ( ), ,r zθ , the displacement and stress components of interest are:  

( )2

3

2 1
4

z
z

P zu
RR
ν

πµ
 −

= + 
 

  ,     
2

5

3
2

z
rz

P rz
R

σ
π

= −   ,            
3

5

3
2

z
zz

P z
R

σ
π

= −             (3.9a,b,c) 

where µ  is the shear modulus, ν  is Poisson’s ratio and 2 2R r z= + . 

At the base z h=  of the cylinder ( )0 r a< < , we obtain 

 ( ) ( )
( ) ( )

4

2

6,
2 1

zz

h R
k r h

h h R

µ

ν
=

 + − 

                                         (3.10) 

where 2 2R r h= + .  The stiffness zzk  is independent of θ  but varies with r from the value 

( ) ( )0, 6 3 2zzk h hµ ν= −  on the axis 0r =  to the limit ( ) ( ) ( )4, 3 1zzk r h h h rµ ν → −   as 

r →∞ .  The representative constant stiffness zz zzk hµβ=  is determined by 

 
( ) ( )

4 5

0

2 1

0

6

2 1

a

zz a

h rR dr

h R rR dr
β

ν

−

−
=

 + − 

∫
∫

                                     (3.11) 

where 2 2R r h= + .  The dimensionless stiffness zzβ  is only a function of h a  and ν .  

Numerical values for zzβ  for 1 3ν =  are shown in Fig. 3.1 as a function of h a .  

On the mantle r a=  of the cylinder, we obtain 

 ( ) ( ) ( )
( ) ( )

2 2

2

6,
2 1

rz

z R a R
k a z

a z R

µ

ν
=

 + − 

                              (3.12) 
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where 2 2R a z= + .  The stiffness ( ),rzk a z  tends to zero as 0z →  and 

( ) ( ) ( )2, 6 3 2rzk a z a a zµ ν → −   for z →∞ .  The representative constant stiffness 

rz rzk aµβ=  is determined by  

 
( ) ( )

2 2 5

0

2 1

0

6

2 1

h

rz h

a z R dz

z R R dz
β

ν

−

−
=

 + − 

∫
∫

                                       (3.13) 

where 2 2R z a= + .  Numerical values of rzβ  for 1 3ν =  are shown in Fig. 3.1 as a 

function of h a . 

3.2 ESTIMATES OF THE SPRING CONSTANTS rrk , rk θ , zrk , AND zk θ   

Estimates of the spring constants rrk , rk θ , zrk , and zk θ  can be obtained from Cerruti’s 

(1882) solution for a horizontal point load zP  on the surface of an elastic half-space ( )0z > .  

The quantities of interest are: 

( )
( )

2 2

2 21 1 2 cos
4

x
r

P r R ru
R R zR R z

ν θ
πµ

    = + + − − + +   
               (3.14A) 

 ( )1 1 2 sin
4

xP Ru
R R zθ ν θ

πµ
  = − + −  +  

                               (3.14b) 

and  

 ( )
( )

2 2

2 2 2

3 1 2 cos
2

x
rr

P r R r
RR R R z

σ ν θ
π

  = − − − 
+  

                       (3.15a) 

( )
( )

2

2 21 2 sin
2

x
r

P rR
R R z

θσ ν θ
π

= −
+

                                    (3.15b) 

 
2

2 3

3 cos
2

x
zr

P r z
R R

σ θ
π

= −                                                (3.15c) 

 0zθσ =                                                                       (3.15d) 
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where 2 2R r z= + . 

The resulting spring constants rrk  and rk θ on the lateral boundary 

( )0 2 ,0r a z hθ π= < < < <  are given by 

 ( )
( )

( )

( )
( )

2 2

2 2

2 2

2 2

3 1 2
2,

1 1 2
rr

r R r
RR R z

k a z
R r R r

R zR R z

ν
µ

ν

  − − 
+  =

    + + − − + +   

  ,          ( )r a=  (3.16a) 

 ( ) ( ) ( )

( )

22 1 2
,

1 1 2
r

rR
R z

k a z
R R

R z

θ

ν µ

ν

− +
=

  + −  +  

  ,                       ( )r a=        (3.16b) 

where 2 2R a z= + .  The spring constant rrk  and rk θ depend on depth z.  In 

particular, ( )2 1rrk aν µ→ +  and ( ) ( )1 2 1rk aθ ν ν µ = − −   as 0z → . 

The corresponding estimates of the spring constants zrk  and zk θ  on the base z h=  of the 

cylindrical region are  

 ( )
( )

( )
( )

2 3

2 2

2 2

6,

1 1 2
zr

r z R
k r h

R r R r
R zR R z

µ

ν

=
    + + − − + +   

  ,         ( )z h=  (3.17a) 

( ), 0zk r hθ =                                                                                            (3.17b) 

where 2 2R r h= + .  The stiffness zrk  depends on r, and, in particular, 

( ) ( ) ( )212 3 2zrk h r hµ µ → −   as 0r →  and ( )( )23zrk h h rµ→  as r →∞ .  It is 

characteristic of Cerruti’s solution that 0zθσ =  at all points in the half-space.  Consequently, 

the resulting estimate of zk θ  is equal to zero. 

Simpler, average spring constants rrk  and rk θ  over the lateral boundary ( )r a=  and zrk  

and zk θ over the basal area ( )z h=  can be written in the form  



 

 
16

 rr rrk aµ β=   ,                    r rk aθ θµ β=                              (3.18)  

and  

  zr zrk hµ β=   ,                    z zk hθ θµ β=                                 (3.19)  

where  

 

( )
( )

( )
( )

2 2 2

2 2 30

2 2

2 20

32 1 2

1 1 2

h

rr
h

r R r dz
R RR z

r R r dz
R z RR R z

ν

β

ν

  − − 
+  =

    + + − − + +   

∫

∫
  ,          ( )r a=   (3.20a) 

 
( ) ( )

( )

22 1 2

0

0

2 1 2

1 1 2

h

r
h

r R R z dz

R dz
R z R

θ

ν
β

ν

−−− +
=

  + −  +  

∫

∫
  ,                               ( )r a=             (3.20b) 

and  

( )
( )

3 5

0

2 2

2 20

6

1 1 2

a

zr
a

r z R dr

r R r rdr
R z zRR R z

β

ν

−

=
    + + − − + +   

∫

∫
  ,        ( )z h=             (3.21a) 

 0zθβ =                                                                                                          (3.21b) 

The dimensionless stiffness coefficients rrβ , rθβ , and zrβ  depend only on ν  and h a .  

Numerical values for these coefficients are shown in Fig. 3.1 as a function of h a  for 

1 3ν = .  It should be noted that ( )2 1rrβ ν→ +  and ( ) ( )1 2 1rθβ ν ν→ − −  as 0h a → .       
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Figure 3.1. Normalized lateral ( ), ,r r r r zθβ β β  and basal ( ), ,zr z z zθβ β β  stiffness coefficients as a 

function of h a  for a cylindrical soil island of radius a and depth h ( )1 3ν = . 
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3.3 SUMMARY AND COMPARISON 

In summary, average spring constants per unit area distributed over the mantle ( )r a=  

and base ( )z h=  of the artificial boundary are given, respectively, by: 

 rr rrk aµ β=   ,          r rk aθ θµ β=   ,          rz rzk aµ β=            (3.22) 

and  
 

 zr zrk hµ β=   ,          z zk hθ θµ β=    ,          zz zzk hµ β=           (3.23) 

Numerical values for the dimensionless coefficients αββ  ( ), ; , ,r z r zα β θ= =  for  

1 3ν =  are listed in Table 3.1.  

Table 3.1.  Numerical values for the normalized lateral ( ), ,r r r r zθβ β β  and basal ( ), ,z r z z zθβ β β  

boundary stiffnesses ( )1 3ν = . 

  

  

  
 
 

    

 

 

 

 

 

 

 

 

 

 

 

 

h a  rrβ  rθβ  r zβ  zrβ  zθβ  z zβ  

 

0.0 2.667 0.500 0.000 0.000 0.000 0.000 

0.2 2.627 0.422 0.056 0.366 0.000 0.317 

0.4 2.490 0.361 0.190 0.633 0.000 0.658 

0.6 2.308 0.314 0.335 0.774 0.000 0.991 

0.8 2.123 0.279 0.449 0.809 0.000 1.286 

1.0 1.956 0.252 0.524 0.776 0.000 1.530 

1.2 1.814 0.230 0.566 0.711 0.000 1.724 

1.4 1.696 0.213 0.585 0.635 0.000 1.877 

1.6 1.598 0.199 0.590 0.560 0.000 1.996 

1.8 1.517 0.188 0.587 0.491 0.000 2.090 

2.0 1.448 0.179 0.578 0.431 0.000 2.164 

2.5 1.317 0.160 0.549 0.315 0.000 2.291 

3.0 1.224 0.147 0.518 0.236 0.000 2.369 

4.0 1.100 0.130 0.466 0.144 0.000 2.452 

5.0 1.020 0.119 0.427 0.096 0.000 2.494 
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An extreme test of the spring constants obtained here for a cylindrical region, results from 

applying these springs directly to the boundary of a rigid cylindrical foundation of radius a  

and depth h .  The vertical V VK  and horizontal HHK  static impedance functions for the 

foundation for resting on the distributed springs are given by  

 2V V rz zz
h aK a
a h

µ π β π β    = +        
                                           (3.24a) 

 ( ) ( )
2HH rr r zr z

h aK a
a hθ θ

πµ π β β β β    = + + +        
                    (3.24b) 

which can be compared with the corresponding static impedance functions for a rigid 

cylindrical foundation embedded in an elastic half-space.  A comparison of the estimates of 

the vertical and horizontal impedance functions given by Eqs. (3.24 a, b) with results 

obtained by Apsel and Luco (1987) for a cylindrical foundation embedded in a half-space is 

presented in Table 3.2.  The differences range from 7 to 30 percent, which is remarkable 

considering that the boundary springs were derived under the assumption of a significant 

distance between the loaded area and the artificial boundary. 

Table 3.2.  Comparison of impedance functions for a rigid cylindrical foundation ( )1 4ν = . 

 

 V VK  V VK      H HK  H HK     

h a  Eq. (3.24a)  Apsel & Luco  Eq. (3.24b) Apsel & Luco 

 

0.00 

 

3.92 

 

5.51 

 

3.21 

 

4.62 

0.25 4.67 6.40 5.06 6.32 

0.50 5.50 7.09 6.44 7.51 

1.00 7.41 8.33 7.99 9.52 

2.00 9.79 10.47 10.29 12.86 
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4.  RECTANGULAR REGIONS 

Finally, we consider a rectangular soil island or truncated region of 

dimensions 2 2x y za x a x a  ( ), , 0x x y y za x a a y a z a− < < − < < < < carved out of the half-

space 0z > .  The boundary conditions of the planes xx a= , yy a= , and zz a=  are 

approximated respectively by 

 xx xx xk uσ = −  ,          xy xy yk uσ = −  ,          xz xz zk uσ = −  ,          xx a=               (4.1a) 

             yx yx xk uσ = −  ,          yy yy yk uσ = −  ,          yz yz zk uσ = −  ,         yy a=               (4.1b)      

zx zx xk uσ = −  ,           zy zy yk uσ = −  ,          zz zz zk uσ = −  ,          zz a=               (4.1c)  

where ( ), , ,i jk i j x y z= =  represent the stiffness per unit area of boundary springs distributed 

over the artificial boundaries of the soil island.  The notation for these springs is such that the 

first subscript (i) in i jk  denotes the normal to the boundary plane on which the spring acts 

while the second subscript (j) denotes the direction of the spring.    

The stiffnesses ( ), ,xx yx zxk k k  of the springs acting in the x-direction on the x-, y-, and z-

boundary planes are obtained in an approximate fashion from: 

 ( ) ( ) ( ), , , , , ,xx x xx x x xk a y z a y z u a y zσ= −                         (4.2a) 

( ) ( ) ( ), , , , , ,yx y yx y x yk x a z x a z u x a zσ= −                              (4.2b) 

( ) ( ) ( ), , , , , ,zx z zx z x zk x y a x y a u x y aσ= −                             (4.2c) 

where the stresses and displacements in Eq. (4.2) correspond to those for a fundamental 

solution for an unbounded medium or a half-space leading to a significant displacement in 

the x-direction.  For example, the solution of Kelvin (1848) for a concentrated horizontal 

force xP  buried in a full space or Cerruti’s (1882) solution for a concentrated horizontal force 

xP  acting on the surface of a half-space should lead to useful asymptotic estimates for xxk , 

yxk , and zxk  when the artificial boundary is sufficiently removed from the loaded area. 

Equations similar to (4.2 a, b, c) are used to determine the stiffnesses ( xyk , yyk , zyk ) and 

( xzk , yzk , zzk ) of distributed springs acting on the boundary planes in the y- and z-directions, 
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respectively.  The approximate boundary conditions on the planes xx a= −  and yy a= −  differ 

from those listed in Eqs. (4.1a) and (4.1b) only by the sign of the terms on the right-hand-side 

of these equations.     

The results to be presented will show some spatial variation of the stiffness i jk over the 

boundary planes.  Although it is clearly possible to use variable spring coefficients, in most 

applications it may be desirable to use a constant value over the face of the boundary planes.  

One way to obtain average spring coefficients per unit area ijk  is to use 

 ( )
i i

ij ij i j iS S
k dS u dSσ= − ∫∫ ∫∫                                      (4.3) 

where { }, , 0x x y y zS x a a y a z a= = − ≤ ≤ ≤ ≤ , { }, , 0y x x y zS a x a y a z a= − ≤ ≤ = ≤ ≤ , 

and { }, ,z x x y y zS a x a a y a z a= − ≤ ≤ − ≤ ≤ = .  As in the case of Eq. (4.2), the stresses ijσ  

and displacements ju  are taken to correspond to a fundamental solution.      

4.1  BOUNDARY SPRING CONSTANTS BASED ON KELVIN’S SOLUTION 

Initially, it is convenient to consider Kelvin’s solution for a concentrated force in an 

unbounded full space (Thomson, 1882).   In particular, for a concentrated force xP  acting at 

the origin in the x-direction, it is found that 

 ( ) ( ) ( ) ( )
2

3 2, , 1 2 3 , ,
8 1

x
xx yx zx

P x x y z
R R

σ σ σ ν
π ν

 
= − − + −  

             (4.4) 

and  

 
( ) ( )

2

23 4
16 1

x
x

P xu
R R

ν
πµ ν

 
= − + −  

                            (4.5) 

where ( )
1

2 2 2 2R x y z= + + , µ  is the shear modulus, and ν  is Poisson’s ratio.  The 

corresponding expressions for the local spring constants xxk , yxk , and zxk  are given by 

 ( ) ( )2

2, , , ,xx yx zx xk k k x y z
R
µ α=                                  (4.6a) 

where xα  is given by Eq. (4.7) below. 



 

 
22

Proceeding in the same fashion for concentrated forces yP  and zP  acting in the x-and y-

directions, leads to  

 ( ) ( )2

2, , , ,xy yy zy yk k k x y z
R
µ α=                                   (4.6b) 

and 

 ( ) ( )2

2, , , ,xz yz zz zk k k x y z
R
µ α=                                   (4.6c) 

where 

 ( ) ( )
( )

( )
( )

( )
( )

2 2 2 2 2 2

2 2 2 2 2 2

3 1 2 3 1 2 3 1 2
, , , ,

3 4 3 4 3 4x y z

x R y R z R
x R y R z R

ν ν ν
α α α

ν ν ν

 + − + − + −
=  

+ − + − + −  
           (4.7) 

Grouping the spring constants by the coordinate-plane on which they act, results in  

 ( ) ( )2

2, , , ,xx xy xz x y z
xk k k

R
µ α α α=                                  (4.8a) 

 ( ) ( )2

2, , , ,yx yy yz x y z
yk k k

R
µ α α α=                                (4.8b) 

 ( ) ( )2

2, , , ,zx zy zz x y z
zk k k

R
µ α α α=                                (4.8c) 

It is instructive to consider the values of the spring constants at a few selected locations.  

First, on the plane xx a=  at the points of coordinates ( ),0,0xa , ( ), , 0x xa a , and ( ),0,x xa a , 

the values of the spring constants xxk , xyk , and xzk  are, respectively: 

 ( ) 2 4 2 1 2 1 2, , , ,
4 4 3 4 3 4xx xy xz

x

k k k
a
µ ν ν ν

ν ν ν
− − − =  − − − 

                    (4.9a) 

 ( ) 5 4 5 4 1 2, , , ,
7 8 7 8 3 4xx xy xz

x

k k k
a
µ ν ν ν

ν ν ν
− − − =  − − − 

               (4.9b) 

and  

 ( ) 5 4 1 2 5 4, , , ,
7 8 3 4 7 8xx xy xz

x

k k k
a
µ ν ν ν

ν ν ν
− − − =  − − − 

                          (4.9c) 
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which for 1 3ν =  become ( )2.5, 0.4, 0.4 xaµ , ( )0.846, 0.846, 0.2 xaµ , and 

( )0.846, 0.2, 0.846 xaµ , respectively.   It should be noted that the value of xzk  is not zero at 

0z =  as Kelvin’s solution pertains to a full space and does not satisfy the condition 0xzσ =  

at 0z = .    

At selected points ( )0,0, za , ( ),0,z za a , and ( )0, ,z za a  all on the plane zz a= , the 

corresponding values of the spring constants zxk , zyk , and zzk  are, respectively, 

 ( ) 2 1 2 1 2 4 2, , , ,
3 4 3 4 4 4zx zy zz

z

k k k
a
µ ν ν ν

ν ν ν
− − − =  − − − 

                   (4.10a) 

 ( ) 5 4 1 2 5 4, , , ,
7 8 3 4 7 8zx zy zz

z

k k k
a
µ ν ν ν

ν ν ν
− − − =  − − − 

                             (4.10b) 

and, 

 ( ) 1 2 5 4 5 4, , , ,
3 4 7 8 7 8zx zy zz

z

k k k
a
µ ν ν ν

ν ν ν
− − − =  − − − 

                     (4.10c) 

The variation of the normalized spring constants x xxa k µ , y yxa k µ , and z zxa k µ  over 

the planes xx a= , yy a= , and zz a=  are shown in Figs. 4.1 a, b, c for the particular case 

x y za a a a= = =  and 1 3ν = .  The corresponding variation of the spring constants x xza k µ , 

y yza k µ , and z zza k µ  over the planes xx a= , yy a= , and zz a=  ( )x y za a a a= = =  are 

shown in Figs. 4.1 d, e, f. 

The average spring constants ijk  over the boundary planes obtained by use of Kelvin’s 

solution for concentrated forces along the x-, y-, and z-direction are:  

 ( ) ( ), , , ,xx xy xz xx xy xz
x

k k k
a
µ β β β=                   (4.11a) 

 ( ) ( ), , , ,yx yy yz yx yy yz
y

k k k
a
µ β β β=                  (4.11b) 

 ( ) ( ), , , ,zx zy zz zx zy zz
z

k k k
a
µ β β β=                    (4.11c) 

where 
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( ) ( )

( ) ( )

2 3

2
2 1

1 2 3
2

3 4
x

x

xS
xx x

xS

x R R dS
a

x R R dS

ν
β

ν

−

−

 − + =
 − + 

∫∫
∫∫

   ,          xx a=             (4.12a) 

( ) ( )

( ) ( )

2 3

2
2 1

1 2 3
2

3 4
x

x

xS
xy x

xS

y R R dS
a

y R R dS

ν
β

ν

−

−

 − + =
 − + 

∫∫
∫∫

  ,          xx a=             (4.12b) 

 
( ) ( )

( ) ( )

2 3

2
2 1

1 2 3
2

3 4
x

x

xS
xz x

xS

z R R dS
a

z R R dS

ν
β

ν

−

−

 − + =
 − + 

∫∫
∫∫

  ,          xx a=    .         (4.12c) 

 
 
 

 

Figure 4.1.  Variation of the normalized stiffness coefficients over the boundary planes for a 
rectangular soil island of dimensions ( )2 2a x a x a .  The figures correspond to:   (a) ( ), ,xxak a y z µ , 
(b) ( ), ,yxak x a z µ , (c) ( ), ,zxak x y a µ , (d) ( ), ,xzak a y z µ , (e) ( ), ,yzak x a z µ , and (f) 

( ), ,zzak x y a µ .  Results are based on Kelvin’s fundamental solution ( )1 3ν = .       

(a)

(b)

(c)

(d)

(e)

(f)
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Similar expressions hold for the other normalized average spring constants ijβ .  It should be 

noted that the normalized spring constants xxβ , xyβ , and xzβ  depend on ν , ( )z xa a , and 

( )z ya a . Similarly, yxβ , yyβ , and yzβ  depend only on ν , ( )z xa a , and ( )z ya a . Finally, 

the coefficients zxβ , zyβ , zzβ  depend on ν , ( )z xa a , and ( )z ya a . 

Numerical values for the normalized average spring constants ijβ  for 1 3ν = , 

x ya a a= =  and za h= are presented in Table 4.1 as a function of h a .  The table includes 

values for xx yyβ β= , xy yxβ β= , xz yzβ β= , zx zyβ β= , and zzβ  where the equalities hold for 

the case x ya a= .  The variations of these parameters with h a  are shown in Fig. 4.2. 

Table 4.1.  Dimensionless Boundary Stiffness Coefficients for  ( 1 3ν = , based on  Kelvin’s 
Solution) for a Rectangular Soil Island of Dimensions 2 2a x a x h . 

h a  xx yyβ β=  xy yxβ β=  xz yzβ β=  zx zyβ β=  zzβ  

 

0.0 1.841 0.717 0.321 0.000 0.000 

0.2 1.809 0.707 0.346 0.207 0.293 

0.4 1.723 0.680 0.406 0.370 0.596 

0.6 1.610 0.642 0.474 0.478 0.890 

0.8 1.492 0.602 0.528 0.537 1.155 

1.0 1.382 0.562 0.562 0.562 1.382 

1.2 1.286 0.526 0.579 0.567 1.569 

1.4 1.204 0.494 0.584 0.560 1.721 

1.6 1.134 0.466 0.580 0.549 1.844 

1.8 1.075 0.442 0.572 0.536 1.943 

2.0 1.024 0.421 0.560 0.523 2.023 
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Figure 4.2. Normalized average stiffness coefficients for a rectangular soil island ( )2 2a x a x h .  The 
numerical results are based on Kelvin’s fundamental solution ( )1 3ν = . 
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4.2  BOUNDARY SPRING CONSTANTS BASED ON BOUSSINESQ’S SOLUTION 

The solution of Boussinesq (1878) for a concentrated normal load zP  at the origin of an 
elastic half-space ( )0z >  can also be used to obtain approximate values for the distributed 
spring constants xzk , yzk , and zzk .  The relevant stress and displacement components are 

 ( ) ( )
2

5

3
, , , ,

2
z

xz yz zz
P z

x y z
R

σ σ σ
π

= −                                   (4.13) 

and 

 ( )
2

2 1
4

z
z

P zu
R R

ν
πµ

  = − +  
   

                                 (4.14) 

where ( )
1

2 2 2 2R x y z= + + .  The resulting distributed spring constants per unit area xzk , yzk , 

and zzk  can be written in the form 

 ( ) ( )2

2, , , ,xz yz zz zk k k x y z
R
µ α=                               (4.15) 

where 

 
( )

2

2 2

3
2 1z

z
z R

α
ν

 
=  

+ −  
                                (4.16) 

The normal spring constant zzk  takes the values: ( ) ( )6 3 2zz zk aν µ = −  , 

( ) ( )3 5 4zz zk aν µ = −  , ( ) ( )3 5 4zz zk aν µ = −  , respectively, at the points ( )0,0, za , 

( ),0,z za a , and ( )0, ,z za a  on the zz a=  plane.  These values are very similar to those 

obtained on the basis of Kelvin’s solution.   

The shear spring constant xzk  is zero at all points 0z = .  At the point ( ),0,x xa a , it takes 

the value ( ) ( )3 5 4xz xk aν µ = −  , which is not very different from the value 

( ) ( ) ( )5 4 7 8 xaν ν µ − −   obtained from Kelvin’s solution.   
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Figure 4.3.  Variation of the normalized stiffness coefficients over the boundary planes for a 
rectangular soil island of dimensions ( )2 2a x a x a .  The figures correspond to:   (a) ( ), ,xxak a y z µ , 
(b) ( ), ,yxak x a z µ , (c) ( ), ,zxak x y a µ , (d) ( ), ,xzak a y z µ , (e) ( ), ,yzak x a z µ , and (f) 

( ), ,zzak x y a µ .  Results are based on Cerruti’s (a, b, c) and Boussinesq’s (d, e, f) fundamental 
solutions ( )1 3ν = . 

The variations of the normalized spring constants x xza k µ , y yza k µ , and z zza k µ  over 

the planes xx a= , yy a= , and zz a=  are shown in Figs 4.3 d, e, f, respectively, for the case 

x y za a a a= = =  and 1 3ν = .  Again, although the spatial variation is significant, it is 

convenient to introduce some uniform spring constants calculated by use of Eq. (4.3).  The  

(a)

(b)

(c) (f)

(e)

(d)
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resulting expressions for xzk , yzk , and zzk  are given by  

 ( ) ( ), , , ,xz yz zz xz x yz y zz zk k k a a aµ β β β=                           (4.17) 

where 
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Table 4.2.  Dimensionless Boundary Stiffness Coefficients for a Rectangular Soil Island of  
Dimensions 2 2a x a x h . The results are based on the solutions of Boussinesq and Cerruti ( )1 3ν = . 

h a  xx y yβ β=  x y yxβ β=  xz yzβ β=  zx z yβ β=  z zβ  
 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

 
2.004 
1.966 
1.866 
1.734 
1.599 
1.474 
1.366 
1.275 
1.198 
1.134 
1.079 

 
0.729 
0.706 
0.670 
0.626 
0.581 
0.539 
0.501 
0.468 
0.440 
0.416 
0.396 

 
0.000 
0.038 
0.131 
0.238 
0.329 
0.394 
0.435 
0.458 
0.468 
0.470 
0.467 

 
0.000 
0.199 
0.345 
0.427 
0.453 
0.443 
0.413 
0.376 
0.337 
0.300 
0.266 

 
0.000 
0.281 
0.582 
0.881 
1.156 
1.392 
1.589 
1.749 
1.878 
1.982 
2.067 
 
 
 
 

 

Numerical values for the normalized uniform spring constants xzβ , yzβ , zzβ  for 1 3ν =  

and x ya a a= = and za h=  are presented in Table 4.2 as a function of h a .  The variations 

of these spring constants with h a  are shown in Fig. 4.4. 
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Figure 4.4.  Normalized average stiffness coefficients for a rectangular soil island ( )2 2a x a x h .  The 
numerical results are based on the fundamental solutions of Boussinesq and Cerruti ( )1 3ν = .    

0

0.5

1

1.5

2

2.5

0.0 0.5 1.0 1.5 2.0

h/a

D
im

en
si

on
le

ss
 S

tif
fn

es
s

xx yyβ β=

xy yxβ β=

xz yzβ β=
z x z yβ β=

z zβ



 

4.3 BOUNDARY SPRING CONSTANTS BASED ON CERRUTI’S SOLUTION 

Cerruti’s (1882) solution for a concentrated load xP  tangential to the boundary plane of 

an elastic half-space ( )0z >  can be used to determine alternative estimates for the spring 

constants xxk , yxk , zxk .  The stress and displacement components of interest are: 
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and 

 ( ) ( ) ( )

2 2

2 21 1 2
4

x
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P x R xu
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ν
πµ

    = + + − − + +   
           (4.20) 

where ( )
1

2 2 2 2R x y z= + + .  The resulting spring constants are given by 

( ) ( )2

2, , , ,xx yx zx xx yx zxk k k x y z
R
µ α α α=                                    (4.21) 

where 
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 =

    + + − − + +   

                        (4.22c) 

It should be noted that for 1 2ν = , xx yx zx xα α α α= = =  where xα  is given by Eq. (4.7). 

The values of the spring constant xxk  at the selected points ( ),0,0xa  and ( ), ,0x xa a  on 

the xx a=  plane are ( )2 1xx xk aν µ= +  and xx xk aµ= , respectively.  For 1 3ν = , these 

values are 2.67 xaµ  and xaµ  which should be compared with 2.5 xaµ and 0.846 xaµ  for 

the constants based on Kelvin’s solution.  At the point of coordinates ( ),0,x xa a  and for 

1 3ν = , the value 0.846xx xk aµ= coincides with the results based on Kelvin’s solution. 

On the plane yy a= , the values of the spring constant yxk  at the points ( )0, ,0ya  and 

( ), ,0y ya a  are ( ) ( )1 2 1yx yk aν ν µ = − −   and ( ) ( )1 2yx yk aν ν µ = + −  , respectively.  

For 1 3ν = , these values correspond to 0.5 yaµ  and 0.8 yaµ , respectively, which should 

be compared with 0.4 yaµ  and 0.846 yaµ  for the springs based on Kelvin’s solution.  For 

1 3ν = , the value of yxk  at the point ( )0, ,y ya a  is 0.0957yx yk aµ=  which should be 

compared with 0.2 yaµ in Kelvin’s solution. 

Finally, on the plane zz a= , the coefficients zxk  are zero at all points on 0x = , and 

( ) 1

11 221
3 1 2zx zk a

ν
µ

−

− −
= + 

+ 
 at the point ( ),0,z za a .  For 1 3ν = , this value corresponds to 

0.916 zaµ  which should be compared with 0.846 zaµ  in Kelvin’s solution.     

The variation of the normalized spring constants x xxa k µ , y yxa k µ , z zxa k µ  over the 

planes xx a= , yy a= , and zz a=  are shown in Figures 4.3 a, b, c for the case 1 3ν =  and 

x y za a a a= = = .  The most significant difference with the results in Figures 4.1 a, b, c is that 

zxk  is zero for 0x = .   
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Representative uniform values of the spring constants ( ), ,xx yx zxk k k over the faces of the 

boundary planes can be calculated on the basis of Eq. (4.3).  The resulting expressions are  

 ( ) ( ), , , ,xx yx zx xx x yx y zx zk k k a a aµ β β β=                                 (4.23) 

where 
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Numerical values for the coefficients xxβ , yxβ , zxβ , are presented in Table 4.2 for the 

case 1 3ν = , x ya a a= = and za h= .  The results are presented as a function of h a .  The 

variations of these parameters with h a  are shown in Fig. 4.4.  The most noticeable 

difference with respect to the results in Fig. 4.2 is that the coefficient zxβ  tends to zero as 

h a  increases while zxβ  based on Kelvin’s solution tends to 0.4.    

4.4 COMPARISONS FOR A RIGID FOUNDATION 

A severe test of the spring constants obtained here, results from considering the static 

force-displacement relation for a rigid square foundation of area ( )2 2a a×  embedded to a 

depth h  in a uniform elastic half-space.  Placing the boundary springs in direct contact with 
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the foundation ( ), ,x y za a a a a h= = = results in the total vertical ( )V VK  and 

horizontal ( )HHK stiffness coefficients: 

 ( ) ( )2 2 4 2V V zz xzK a a a h
h a
µ µβ β= × + ×                                             (4.25a) 

 4 8V V zz xz
a hK a
h a

µ β β    = +        
                                           (4.25b) 

and 

 ( ) ( ) ( )2 2 2 2 2 2HH zx yx xxK a a a h a h
h a a
µ µ µβ β β= × + × + ×               (4.26a) 

 4 4 4HH zx yx xx
a h hK a
h a a

µ β β β      = + +            
                         (4.26b) 

The approximate results based on Eqs. (4.25b) and (4.26b) and on the average spring 

constants based on Kelvin’s,  Boussinesq’s,  and Cerruti’s solutions are compared in Table 

4.3 with more accurate results obtained by Mita and Luco (1989) for a rigid square 

foundation ( )2 2a a×  embedded to a depth h  in a uniform half-space ( )1 3ν = .  

 

Table 4.3.  Comparison of Impedance Functions for a Rigid Rectangular Foundation ( )2 2a x a x h  
Embedded in an Elastic Half-Space ( )1 3ν = . 

 

(1) based on Boussinesq’s fundamental solution 
(2) and (4) based on Kelvin’s fundamental solution  

(3) based on Cerruti’s fundamental solution 

 
 

h/a 

 
V VK  

(1) 

 
V VK  

(2) 

 
V VK  

Mita & Luco 
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(3) 
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(4) 

 
HHK  

Mita & Luco 

 

0.0 

 

5.36 
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The estimate of the vertical impedance V VK  based on Boussinesq’s solution is 

systematically lower than the results based on Kelvin’s solution, and also lower than the 

more exact results of Mita and Luco (1989). The differences are still less than 23 percent in 

this extreme case in which the boundary springs are attached directly to the foundation.  The 

comparisons for the horizontal impedance HHK  indicate that the results based on Cerruti’s 

solution are slightly lower than those based on Kelvin’s solution but still approximate the 

actual stiffness coefficient with an error of less than 21 percent.    

5.  CONCLUSIONS 

Simple, approximate expressions for the stiffness coefficients per unit area of boundary 

springs distributed over the artificial boundary of truncated elastic regions have been 

obtained.  These springs serve as approximate boundary conditions on the artificial boundary 

so that the solution within the truncated region approaches that for an unbounded half-space.  

The springs have been selected to match asymptotically the solutions for concentrated forces 

located within the truncated region and away from the artificial boundary. 

Numerical values for the stiffnesses of the boundary springs have been presented for 

hemispherical, cylindrical, and rectangular regions.  The results have been tested by applying 

these springs directly to the boundary of rigid foundations and by comparing the resulting 

static impedance functions with those for the foundations on an elastic half-space.  Although 

these springs have not been formulated to be applied directly to the foundation, but rather to a 

layer soil island surrounding the foundation, the differences between the two sets of 

foundation impedance functions for translational motion of the foundation amount to less 

than 30 percent.  As expected, the differences for the rotational degrees of freedom are much 

larger when the springs are applied directly to the foundation.  However, since the response 

to moments is more localized than that to forces, it is expected that a moderately sized soil 

island or truncated region resting on the boundary springs obtained here will be sufficient to 

accurately represent the translational and rotational response components at points away from 

the artificial boundary. 

The static springs presented herein could be used in conjunction with Lysmer’s dampers 

to obtain a simple, approximate non-reflecting boundary for dynamic soil-structure 

interaction problems.     
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